Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N. Barrier and P. Gougeon*

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042
Rennes CEDEX, France

Correspondence e-mail:
patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma($ Mo-O $)=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.067$
Data-to-parameter ratio $=33.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Pr}_{3} \mathrm{MoO}_{7}$

Tripraseodymium molybdenum heptaoxide, $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$, is isostructural with $\mathrm{La}_{3} \mathrm{MoO}_{7}$. Its crystal structure consists of chains of corner-linked MoO_{6} octahedra that are parallel with the b axis and separated from each other by seven-coordinate $\mathrm{Pr}-\mathrm{O}$ polyhedra.

Comment

The $\mathrm{Ln}_{3} M \mathrm{O}_{7}$ compounds, where M is a pentavalent $4 d$ or $5 d$ transition element such as $\mathrm{Nb}, \mathrm{Mo}, \mathrm{Ru}, \mathrm{Ir}, \mathrm{Os}$ or Ta , and Ln is a rare earth, present an ordered double-fluorite structure and crystallize in various orthorhombic space groups, such as Pnma, Cmcm, $C 222_{1}$ or $P 2_{1} 2_{1} 2_{1}$. The main structural feature of the $\mathrm{Ln}_{3} \mathrm{MoO}_{7}$ compounds is the occurrence of zigzag chains of trans-corner-sharing MO_{6} octahedra that are separated by seven- or eight-coordinate $\mathrm{Ln}-\mathrm{O}$ polyhedra. Because of this quasi-one-dimensionality, $\mathrm{La}_{3} \mathrm{RuO}_{7}, \mathrm{La}_{3} \mathrm{OsO}_{7}$ (Lam et al., 2002), $\mathrm{Ln}_{3} \mathrm{OsO}_{7}(\mathrm{Ln}=\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$; Plaisier et al., 2002), $\mathrm{La}_{3} \mathrm{MoO}_{7}$ (Greedan et al., 1997), $\mathrm{Ln}_{3} \mathrm{RuO}_{7}(\mathrm{Ln}=\mathrm{Sm}, \mathrm{Eu}$; Harada \& Hinatsu, 2001) and $\operatorname{Pr}_{3} M \mathrm{O}_{7}(M=\mathrm{Nb}$, Ta; Vente et al., 1994) have been extensively studied in respect of their physical properties.

We present here the crystal structure of $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$. This compound was first synthesized as a powder sample by Prévost-Czeskleba (1987) and found to crystallize in the orthorhombic space group Cmcm , as does $\mathrm{Nd}_{3} \mathrm{NbO}_{7}$ (Rossel, 1979).

Perspective view of $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$ along the b axis. Displacement ellipsoids are drawn at the 97% probability level.

Received 10 January 2003
Accepted 21 January 2003 Online 31 January 2003

Figure 2
Perspective view of $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$ along the c axis.

Our investigation on a single crystal indicates that $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$ crystallizes in the space group $P 2_{1} 2_{1} 2_{1}$ and is isostructural with $\mathrm{La}_{3} \mathrm{MoO}_{7}$ (Greedan et al., 1997). Perspective views of $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$ along the b and c axes are shown in Figs. 1 and 2 , respectively. The $\mathrm{Mo}-\mathrm{O}$ distances within the MoO_{6} octahedra range from 1.854 (4) to 2.088 (5) $\AA[1.861$ (3)2.098 (4) \AA in $\mathrm{La}_{3} \mathrm{MoO}_{7}$], with an average value of $1.974 \AA$ compared to $1.981 \AA$ in $\mathrm{La}_{3} \mathrm{MoO}_{7}$. The three crystallographically independent Pr^{3+} ions are each surrounded by seven O atoms. The oxygen environment of Pr 1 can be viewed as a highly distorted cube, with one apex missing, and those of Pr 2 and Pr 3 as distorted pentagonal bipyramids. The $\mathrm{Pr}-\mathrm{O}$ distances are in the ranges 2.382 (4)-2.690 (5), 2.302 (3)2.658 (3) and 2.280 (4)-2.581 (3) \AA for the Pr1, Pr2 and Pr3 sites, respectively. As mentioned in the Experimental, the structure shows a Pbnm pseudosymmetry. The non-centrosymmetric nature of the structure probably arises from the $\operatorname{Pr} 1$ ion that does not reside at an inversion center, as revealed by the refinement carried out in the space group Pbnm.

Experimental

Single crystals of $\mathrm{Pr}_{3} \mathrm{MoO}_{7}$ were prepared from a stoichiometric amount of $\mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{MoO}_{3}$ and Mo. The initial mixture (ca 5 g) was cold-pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 1973 K , held at this temperature for 10 min , then cooled at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K and finally furnace-cooled.

Crystal data

```
Pr}\mp@subsup{M}{30O}{7
Mr}=630.6
Orthorhombic, }P\mp@subsup{2}{1}{}\mp@subsup{2}{1}{}\mp@subsup{2}{1}{
a=7.5087 (1) \AA
b=7.6412 (2) \AA
c=10.8952 (2) \AA
V=625.12 (2) A }\mp@subsup{}{}{3
Z =4
```


Mo $K \alpha$ radiation
Cell parameters from 11425 reflections

$\theta=1-37.8^{\circ}$

$\mu=24.91 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular block, black
$0.09 \times 0.06 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.139, T_{\text {max }}=0.225$
16521 measured reflections
3345 independent reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029\)
\(w R\left(F^{2}\right)=0.067\)
\(S=1.05\)
3345 reflections
101 parameters
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0091 P)^{2}\right.\)
    \(+7.1924 P]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
```

3222 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=37.8^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 12$
$l=-16 \rightarrow 18$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Mo}-\mathrm{O}^{\text {i }}$	1.854 (4)	Pr2-O7	2.349 (3)
$\mathrm{Mo}-\mathrm{Of}^{\text {ii }}$	1.920 (5)	$\mathrm{Pr} 2-\mathrm{O} 4^{\text {ii }}$	2.392 (4)
$\mathrm{Mo}-\mathrm{Of}^{\text {iii }}$	1.954 (3)	$\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	2.416 (4)
$\mathrm{Mo}-\mathrm{O} 1^{\text {i }}$	2.008 (5)	Pr2-O6	2.524 (4)
$\mathrm{Mo}-\mathrm{OS}^{\text {iv }}$	2.018 (3)	$\mathrm{Pr} 2-\mathrm{O} 2^{\text {x }}$	2.527 (4)
$\mathrm{Mo}-\mathrm{O}^{\text {ii }}$	2.088 (5)	$\mathrm{Pr} 2-\mathrm{O} 5^{\text {iv }}$	2.658 (3)
Pr1- $\mathrm{O7}^{\text {v }}$	2.382 (4)	Pr3-O3	2.280 (4)
Pr1-O7	2.406 (4)	$\mathrm{Pr} 3-\mathrm{O} 3^{\text {xi }}$	2.293 (4)
$\mathrm{Pr} 1-\mathrm{O}^{\text {vi }}$	2.414 (5)	Pr3-O4	2.414 (4)
Pr1-O3 ${ }^{\text {iv }}$	2.420 (5)	Pr3-O1 ${ }^{\text {x }}$	2.458 (4)
Pr1-O4 ${ }^{\text {ii }}$	2.447 (5)	Pr3-O6 ${ }^{\text {i }}$	2.509 (4)
Pr1-O6 ${ }^{\text {ii }}$	2.678 (5)	$\mathrm{Pr} 3-\mathrm{O} 2{ }^{\text {viii }}$	2.531 (4)
$\mathrm{Pr} 1-\mathrm{O} 1^{\text {vii }}$	2.690 (5)	Pr3-O5	2.581 (3)
$\mathrm{Pr} 2-\mathrm{O} 7{ }^{\text {viii }}$	2.302 (3)		
$\mathrm{Mo}^{\text {xii }}-\mathrm{O} 5-\mathrm{Mo}^{\text {xiii }}$	148.3 (2)		
$\begin{aligned} & \text { Symmetry codes: (i) } \frac{3}{2}-x, 2-y, z-\frac{1}{2} ; \text { (ii) } \frac{3}{2}-x, 2-y, \frac{1}{2}+z ; \text { (iii) } 1-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (iv) } \\ & x, y, 1+z ; \text { (v) } 2-x, \frac{1}{2}+y, \frac{3}{2}-z ; \text { (vi) } 2-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (vii) } \frac{5}{2}-x, 2-y, z-\frac{1}{2} ; \text { (viii) } \\ & x-\frac{1}{2}, \frac{3}{2}-y, 1-z ; \text { (ix) } x-\frac{1}{2}, \frac{3}{2}-y, 2-z ; \text { (x) } 2-x, y-\frac{1}{2}, \frac{3}{2}-z ; \text { (xi) } x-\frac{1}{2}, \frac{3}{2}-y,-z \text { ((xii) } \\ & 1-x, y-\frac{1}{2}, \frac{1}{2}-z ; \text { (xiii) } x, y, z-1 \text {. } \end{aligned}$			

Systematic absences were consistent only with the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$. The atomic coordinates of La, Mo and O from $\mathrm{La}_{3} \mathrm{MoO}_{7}$ (Greedan et al., 1997) were used as starting positions in the first stages of the refinement in the present study. Attempts to refine the structure in the space group Pbnm, as suggested by PLATON (Spek, 1998), were unsuccessful and led to an R factor of about 0.10. Refinement of the Flack (1983) parameter gave a value of 0.49 (3), indicating that the crystal studied is a racemic twin.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the 'Centre de diffactométrie de l'Université de Rennes I'.

inorganic papers

References

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Greedan, J. E., Raju, N. P., Wegner, A., Gougeon, P. \& Padiou, J. (1997). J. Solid State Chem. 129, 320-327.
Harada, D. \& Hinatsu, Y. (2001). J. Solid State Chem. 158, 245-253.
Lam, R., Wiss, F. \& Greedan, J. E. (2002). J. Solid State Chem. 167, 182-187.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Plaisier, J. R., Drost, R. J. \& Ijdo, D. J. W. (2002). J. Solid State Chem. 169, 189198.

Prévost-Czeskleba, H. (1987). J. Less Common Met. 127, 117-124.
Rossel, H. J. (1979). J. Solid State Chem. 27, 115-121.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University Of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.
Vente, J. F., Helmholdt, R. B. \& Ijdo, D. J. W. (1994). J. Solid State Chem. 108, 18-23.

